Fundamentals and Materials

Processes inside a battery are very complex. Their investigation requires a comprehensive research approach which addresses fundamental aspects like electrochemistry, modelling, synthesis and materials characterization as well as electrochemical processes in the materials and at the interfaces in a cell alike. This knowledge is the basis for a target-oriented material development.

  • Design and synthesis of new electrochemically active electrode materials and electrolytes to achieve improved battery performance, safety and lifetime.
  • Comprehension of the basic electrochemical processes at the interfaces between the various cell elements based on the continuous development of tools for modelling and simulation in 3D at all relevant time- and length-scales.
  • Development and application of spatially resolved operando and in situ methods as well as post-mortem materials characterization techniques to identify and investigate the relevant transport mechanisms and processes in detail.
  • Modelling based on experimental operando results with a high spatial resolution, validating and further improving  the modelling basis by providing high-accuracy physical, chemical and dynamic information on the properties of materials, electrodes, cells and local processes.
  • A Materials Acceleration Platform will be established where an autonomous robotics together with artificial intelligence will speed up the discovery of new materials by an order.

Publications


2022
Journal Articles
Hofmann, A.; Wang, Z.; Bautista, S. P.; Weil, M.; Müller, F.; Löwe, R.; Schneider, L.; Mohsin, I. U.; Hanemann, T.
Dataset of propylene carbonate based liquid electrolyte mixtures for sodium-ion cells.
2022. Data in Brief, 40, Article no: 107775. doi:10.1016/j.dib.2021.107775Full textFull text of the publication as PDF document
2021
Journal Articles
Dreyer, S. L.; Kretschmer, K. R.; Tripković, Đ.; Mazilkin, A.; Chukwu, R.; Azmi, R.; Hartmann, P.; Bianchini, M.; Brezesinski, T.; Janek, J.
Multi‐Element Surface Coating of Layered Ni‐Rich Oxide Cathode Materials and Their Long‐Term Cycling Performance in Lithium‐Ion Batteries.
2021. Advanced materials interfaces, Article no: 2101100. doi:10.1002/admi.202101100Full textFull text of the publication as PDF document
Fichtner, M.; Edström, K.; Ayerbe, E.; Berecibar, M.; Bhowmik, A.; Castelli, I. E.; Clark, S.; Dominko, R.; Erakca, M.; Franco, A. A.; Grimaud, A.; Horstmann, B.; Latz, A.; Lorrmann, H.; Meeus, M.; Narayan, R.; Pammer, F.; Ruhland, J.; Stein, H.; Vegge, T.; Weil, M.
Rechargeable Batteries of the Future—The State of the Art from a BATTERY 2030+ Perspective.
2021. Advanced Energy Materials. doi:10.1002/aenm.202102904Full textFull text of the publication as PDF document
Hofmann, A.; Wang, Z.; Bautista, S. P.; Weil, M.; Müller, F.; Löwe, R.; Schneider, L.; Mohsin, I. U.; Hanemann, T.
Comprehensive characterization of propylene carbonate based liquid electrolyte mixtures for sodium-ion cells.
2021. Electrochimica acta, 403, Art.Nr.: 139670. doi:10.1016/j.electacta.2021.139670
Akçay, T.; Häringer, M.; Pfeifer, K.; Anhalt, J.; Binder, J. R.; Dsoke, S.; Kramer, D.; Mönig, R.
Na₃V₂(PO₄)₃ ─A Highly Promising Anode and Cathode Material for Sodium-Ion Batteries.
2021. ACS applied energy materials, 4 (11), 12688–12695. doi:10.1021/acsaem.1c02413
Radinger, H.; Ghamlouche, A.; Ehrenberg, H.; Scheiba, F.
Origin of the catalytic activity at graphite electrodes in vanadium flow batteries.
2021. Journal of materials chemistry / A, 9 (34), 18280–18293. doi:10.1039/d1ta04316aFull textFull text of the publication as PDF document
Lin, J.; Willbold, S.; Zinkevich, T.; Indris, S.; Korte, C.
Ionic (Proton) transport and molecular interaction of ionic Liquid–PBI blends for the use as electrolyte membranes.
2021. Journal of molecular liquids, 342, Article: 116964. doi:10.1016/j.molliq.2021.116964
Lai, W.-H.; Zhang, L.; Yan, Z.; Hua, W.; Indris, S.; Lei, Y.; Liu, H.; Wang, Y.-X.; Hu, Z.; Liu, H. K.; Chou, S.; Wang, G.; Dou, S. X.
Activating Inert Surface Pt Single Atoms via Subsurface Doping for Oxygen Reduction Reaction.
2021. Nano letters, 21 (19), 7970–7978. doi:10.1021/acs.nanolett.1c02013
Van Dinter, J.; Indris, S.; Bitter, A.; Grantz, D.; Cibin, G.; Etter, M.; Bensch, W.
Long-Term Stable, High-Capacity Anode Material for Sodium-Ion Batteries: Taking a Closer Look at CrPS₄from an Electrochemical and Mechanistic Point of View.
2021. ACS Applied Materials and Interfaces, 13 (46), 54936–54950. doi:10.1021/acsami.1c14980
Liu-Théato, X.; Indris, S.; Hua, W.; Li, H.; Knapp, M.; Melinte, G.; Ehrenberg, H.
Self-Standing, Collector-Free Maricite NaFePO4 / Carbon Nanofiber Cathode Endowed with Increasing Electrochemical Activity.
2021. Energy & fuels, 35 (22), 18768–18777. doi:10.1021/acs.energyfuels.1c02779
Castelli, I. E.; Arismendi‐Arrieta, D. J.; Bhowmik, A.; Cekic‐Laskovic, I.; Clark, S.; Dominko, R.; Flores, E.; Flowers, J.; Ulvskov Frederiksen, K.; Friis, J.; Grimaud, A.; Hansen, K. V.; Hardwick, L. J.; Hermansson, K.; Königer, L.; Lauritzen, H.; Le Cras, F.; Li, H.; Lyonnard, S.; Lorrmann, H.; Marzari, N.; Niedzicki, L.; Pizzi, G.; Rahmanian, F.; Stein, H.; Uhrin, M.; Wenzel, W.; Winter, M.; Wölke, C.; Vegge, T.
Data Management Plans: the Importance of Data Management in the BIG‐MAP Project[]**.
2021. Batteries & supercaps, 4 (12), 1803–1812. doi:10.1002/batt.202100117Full textFull text of the publication as PDF document
Fritsch, C.; Zinkevich, T.; Indris, S.; Etter, M.; Baran, V.; Bergfeldt, T.; Knapp, M.; Ehrenberg, H.; Hansen, A.-L.
Garnet to hydrogarnet: effect of post synthesis treatment on cation substituted LLZO solid electrolyte and its effect on Li ion conductivity.
2021. RSC Advances, 11 (48), 30283–30294. doi:10.1039/d1ra05961kFull textFull text of the publication as PDF document
Xiu, Y.; Li, Z.; Bhaghavathi Parambath, V.; Ding, Z.; Wang, L.; Reupert, A.; Fichtner, M.; Zhao‐Karger, Z.
Combining Quinone‐Based Cathode with an Efficient Borate Electrolyte for High‐Performance Magnesium Batteries.
2021. Batteries & supercaps, 4 (12), 1850–1857. doi:10.1002/batt.202100163Full textFull text of the publication as PDF document
Ma, Y.; Teo, J. H.; Kitsche, D.; Diemant, T.; Strauss, F.; Ma, Y.; Goonetilleke, D.; Janek, J.; Bianchini, M.; Brezesinski, T.
Cycling Performance and Limitations of LiNiO in Solid-State Batteries.
2021. ACS energy letters, 6 (9), 3020–3028. doi:10.1021/acsenergylett.1c01447
Kitsche, D.; Tang, Y.; Ma, Y.; Goonetilleke, D.; Sann, J.; Walther, F.; Bianchini, M.; Janek, J.; Brezesinski, T.
High Performance All-Solid-State Batteries with a Ni-Rich NCM Cathode Coated by Atomic Layer Deposition and Lithium Thiophosphate Solid Electrolyte.
2021. ACS applied energy materials, 4 (7), 7338–7345. doi:10.1021/acsaem.1c01487
Meng, Z.; Li, Z.; Wang, L.; Diemant, T.; Bosubabu, D.; Tang, Y.; Berthelot, R.; Zhao-Karger, Z.; Fichtner, M.
Surface Engineering of a Mg Electrode via a New Additive to Reduce Overpotential.
2021. ACS applied materials & interfaces, 13 (31), 37044–37051. doi:10.1021/acsami.1c07648
Abouzari-Lotf, E.; Jacob, M. V.; Ghassemi, H.; Zakeri, M.; Nasef, M. M.; Abdolahi, Y.; Abbasi, A.; Ahmad, A.
Highly conductive anion exchange membranes based on polymer networks containing imidazolium functionalised side chains.
2021. Scientific reports, 11 (1), 3764. doi:10.1038/s41598-021-83161-9Full textFull text of the publication as PDF document
Hatakeyama, T.; Li, H.; Okamoto, N. L.; Shimokawa, K.; Kawaguchi, T.; Tanimura, H.; Imashuku, S.; Fichtner, M.; Ichitsubo, T.
Accelerated Kinetics Revealing Metastable Pathways of Magnesiation-Induced Transformations in MnO Polymorphs.
2021. Chemistry of Materials, 33 (17), 6983–6996. doi:10.1021/acs.chemmater.1c02011
Källquist, I.; Lindgren, F.; Lee, M.-T.; Shavorskiy, A.; Edström, K.; Rensmo, H.; Nyholm, L.; Maibach, J.; Hahlin, M.
Probing Electrochemical Potential Differences over the Solid/Liquid Interface in Li-Ion Battery Model Systems.
2021. ACS applied materials & interfaces, 13 (28), 32989–32996. doi:10.1021/acsami.1c07424Full textFull text of the publication as PDF document
Ma, Y.; Ma, Y.; Diemant, T.; Cao, K.; Liu, X.; Kaiser, U.; Behm, R. J.; Varzi, A.; Passerini, S.
Unveiling the Intricate Intercalation Mechanism in Manganese Sesquioxide as Positive Electrode in Aqueous Zn‐Metal Battery.
2021. Advanced energy materials, 11 (35), Art.Nr. 2100962. doi:10.1002/aenm.202100962Full textFull text of the publication as PDF document
Wollstadt, S.; Ikeda, Y.; Sarkar, A.; Vasala, S.; Fasel, C.; Alff, L.; Kruk, R.; Grabowski, B.; Clemens, O.
Structural and Magnetic Properties of BaFeO Synthesized by Oxidizing BaFeO Obtained via Nebulized Spray Pyrolysis.
2021. Inorganic Chemistry, 60 (15), 10923–10933. doi:10.1021/acs.inorgchem.1c00434
Montanino, M.; Sico, G.; De Girolamo Del Mauro, A.; Asenbauer, J.; Binder, J. R.; Bresser, D.; Passerini, S.
Gravure‐Printed Conversion/Alloying Anodes for Lithium‐Ion Batteries.
2021. Energy technology, 9 (9), Art.Nr. 2100315. doi:10.1002/ente.202100315Full textFull text of the publication as PDF document
Li, Z.; Diemant, T.; Meng, Z.; Xiu, Y.; Reupert, A.; Wang, L.; Fichtner, M.; Zhao-Karger, Z.
Establishing a Stable Anode–Electrolyte Interface in Mg Batteries by Electrolyte Additive.
2021. ACS applied materials & interfaces, 13 (28), 33123–33132. doi:10.1021/acsami.1c08476Full textFull text of the publication as PDF document
Tian, G.; Huang, C.; Luo, X.; Zhao, Z.; Peng, Y.; Gao, Y.; Tang, N.; Dsoke, S.
Lithium Storage Mechanism Study of N‐doped Carbon Modified Cu₂S Electrodes for Lithium‐ion Batteries.
2021. Chemistry - a European journal, chem.202101818. doi:10.1002/chem.202101818
Ma, Y.; Ma, Y.; Dreyer, ören L.; Wang, Q.; Wang, K.; Goonetilleke, D.; Omar, A.; Mikhailova, D.; Hahn, H.; Breitung, B.; Brezesinski, T.
High-Entropy Metal–Organic Frameworks for Highly Reversible Sodium Storage.
2021. Advanced Materials, 33 (34), Art. Nr.: 2101342. doi:10.1002/adma.202101342Full textFull text of the publication as PDF document
Fu, Q.; Wang, J.; Sarapulova, A.; Zhu, L.; Missyul, A.; Welter, E.; Luo, X.; Ding, Z.; Knapp, M.; Ehrenberg, H.; Dsoke, S.
Electrochemical performance and reaction mechanism investigation of V₂O₅ positive electrode material for aqueous rechargeable zinc batteries.
2021. Journal of materials chemistry / A, 9 (31), 16776–16786. doi:10.1039/D1TA03518EFull textFull text of the publication as PDF document
Hua, W.; Wang, S.; Wang, K.; Missyul, A.; Fu, Q.; Dewi Darma, M. S.; Li, H.; Baran, V.; Liu, L.; Kübel, C.; Binder, J. R.; Knapp, M.; Ehrenberg, H.; Indris, S.
Li+/Na+Ion Exchange in Layered Na(NiMn)O2: A Simple and Fast Way to Synthesize O/O-Type Layered Oxides.
2021. Chemistry of Materials, 33 (14), 5606–5617. doi:10.1021/acs.chemmater.1c00962
Liu, Z.; Wang, X.; Liu, Z.; Zhang, S.; Lv, Z.; Cui, Y.; Du, L.; Li, K.; Zhang, G.; Lin, M.-C.; Du, H.
Low-Cost Gel Polymer Electrolyte for High-Performance Aluminum-Ion Batteries.
2021. ACS Applied Materials and Interfaces, 13 (24), 28164–28170. doi:10.1021/acsami.1c05476
Teo, J. H.; Strauss, F.; Tripković, Đ.; Schweidler, S.; Ma, Y.; Bianchini, M.; Janek, J.; Brezesinski, T.
Design-of-experiments-guided optimization of slurry-cast cathodes for solid-state batteries.
2021. Cell Reports Physical Science, 2 (6), Art.-Nr.: 100465. doi:10.1016/j.xcrp.2021.100465Full textFull text of the publication as PDF document
Kaland, H.; Håskjold Fagerli, F.; Hadler‐Jacobsen, J.; Zhao‐Karger, Z.; Fichtner, M.; Wiik, K.; Wagner, N. P.
Performance Study of MXene/Carbon Nanotube Composites for Current Collector‐ and Binder‐Free Mg–S Batteries.
2021. ChemSusChem, 14 (8), 1864–1873. doi:10.1002/cssc.202100173Full textFull text of the publication as PDF document
Mohtadi, R.; Tutusaus, O.; Arthur, T. S.; Zhao-Karger, Z.; Fichtner, M.
The metamorphosis of rechargeable magnesium batteries.
2021. Joule, 5 (3), 581–617. doi:10.1016/j.joule.2020.12.021
Wetzel, T.; Bessler, W. G.; Kamlah, M.; Nirschl, H.
Simulation of Mechano‐Electro‐Thermal Processes in Lithium‐Ion Batteries.
2021. Energy technology, 9 (6), Art.Nr. 2100246. doi:10.1002/ente.202100246
Wissel, K.; Schoch, R.; Vogel, T.; Donzelli, M.; Matveeva, G.; Kolb, U.; Bauer, M.; Slater, P. R.; Clemens, O.
Electrochemical Reduction and Oxidation of Ruddlesden–Popper-Type LaNiOF within Fluoride-Ion Batteries.
2021. Chemistry of materials, 33 (2), 499–512. doi:10.1021/acs.chemmater.0c01762
Kumar, V.; Gajraj, V.; Gnanasekar, K. I.; Dsoke, S.; Indris, S.; Ehrenberg, H.; Roling, B.; Mariappan, C. R.
Hybrid aqueous supercapacitors based on mesoporous spinel-analogous Zn-Ni-Co-O nanorods: Effect of Ni content on the structure and energy storage.
2021. Journal of Alloys and Compounds, 882, Art.-Nr.: 160712. doi:10.1016/j.jallcom.2021.160712
Rauber, D.; Hofmann, A.; Philippi, F.; Kay, C. W. M.; Zinkevich, T.; Hanemann, T.; Hempelmann, R.
Structure-Property Relation of Trimethyl Ammonium Ionic Liquids for Battery Applications.
2021. Applied Sciences, 11 (12), 5679. doi:10.3390/app11125679Full textFull text of the publication as PDF document
Ma, Y.; Ma, Y.; Wang, Q.; Schweidler, S.; Botros, M.; Fu, T.; Hahn, H.; Brezesinski, T.; Breitung, B.
High-entropy energy materials: Challenges and new opportunities.
2021. Energy and Environmental Science, 14 (5), 2883–2905. doi:10.1039/d1ee00505gFull textFull text of the publication as PDF document
Chen, Z.; Schwarz, B.; Zhang, X.; Du, W.; Zheng, L.; Tian, A.; Zhang, Y.; Zhang, Z.; Zeng, X. C.; Zhang, Z.; Huai, L.; Wu, J.; Ehrenberg, H.; Wang, D.; Li, J.
Peroxo Species Formed in the Bulk of Silicate Cathodes.
2021. Angewandte Chemie / International edition, 60 (18), 10056–10063. doi:10.1002/anie.202100730Full textFull text of the publication as PDF document
Tian, G.; Song, Y.; Luo, X.; Zhao, Z.; Han, F.; Chen, J.; Huang, H.; Tang, N.; Dsoke, S.
ZnS nanoparticles embedded in N-doped porous carbon xerogel as electrode materials for sodium-ion batteries.
2021. Journal of alloys and compounds, 877, Art.-Nr.: 160299. doi:10.1016/j.jallcom.2021.160299
Zhou, Y.-Q.; Zhang, L.; Suo, H.-L.; Hua, W.; Indris, S.; Lei, Y.; Lai, W.-H.; Wang, Y.-X.; Hu, Z.; Liu, H.-K.; Chou, S.-L.; Dou, S.-X.
Atomic Cobalt Vacancy-Cluster Enabling Optimized Electronic Structure for Efficient Water Splitting.
2021. Advanced Functional Materials, (126), Art.Nr. 2101797. doi:10.1002/adfm.202101797
Fu, Q.; Sarapulova, A.; Zhu, L.; Melinte, G.; Missyul, A.; Welter, E.; Luo, X.; Knapp, M.; Ehrenberg, H.; Dsoke, S.
In operando study of orthorhombic V₂O₅ as positive electrode materials for K-ion batteries.
2021. Journal of Energy Chemistry, 62, 627–636. doi:10.1016/j.jechem.2021.04.027Full textFull text of the publication as PDF document
Liu, X.; Schneider, D.; Daubner, S.; Nestler, B.
Simulating mechanical wave propagation within the framework of phase-field modelling.
2021. Computer methods in applied mechanics and engineering, 381, Article: 113842. doi:10.1016/j.cma.2021.113842
Sukkurji, P. A.; Cui, Y.; Lee, S.; Wang, K.; Azmi, R.; Sarkar, A.; Indris, S.; Bhattacharya, S. S.; Kruk, R.; Hahn, H.; Wang, Q.; Botros, M.; Breitung, B.
Mechanochemical synthesis of novel rutile-type high entropy fluorides for electrocatalysis.
2021. Journal of Materials Chemistry A, 9 (14), 8998–9009. doi:10.1039/d0ta10209aFull textFull text of the publication as PDF document
Walther, F.; Strauss, F.; Wu, X.; Mogwitz, B.; Hertle, J.; Sann, J.; Rohnke, M.; Brezesinski, T.; Janek, J.
The Working Principle of a LiCO/LiNbOCoating on NCM for Thiophosphate-Based All-Solid-State Batteries.
2021. Chemistry of Materials, 33 (6), 2110–2125. doi:10.1021/acs.chemmater.0c04660
Richter, R.; Häcker, J.; Zhao-Karger, Z.; Danner, T.; Wagner, N.; Fichtner, M.; Friedrich, K. A.; Latz, A.
Degradation Effects in Metal-Sulfur Batteries.
2021. ACS Applied Energy Materials, 4 (3), 2365–2376. doi:10.1021/acsaem.0c02888
Ji, Y.; Liu-Théato, X.; Xiu, Y.; Indris, S.; Njel, C.; Maibach, J.; Ehrenberg, H.; Fichtner, M.; Zhao-Karger, Z.
Polyoxometalate Modified Separator for Performance Enhancement of Magnesium–Sulfur Batteries.
2021. Advanced Functional Materials, 31 (26), Art.-Nr.: 2100868. doi:10.1002/adfm.202100868Full textFull text of the publication as PDF document
Hoffrogge, P. W.; Mukherjee, A.; Nani, E. S.; Amos, P. G. K.; Wang, F.; Schneider, D.; Nestler, B.
Multiphase-field model for surface diffusion and attachment kinetics in the grand-potential framework.
2021. Physical review / E, 103 (3), Article no: 033307. doi:10.1103/PhysRevE.103.033307Full textFull text of the publication as PDF document
Abouzari-Lotf, E.; Azmi, R.; Li, Z.; Shakouri, S.; Chen, Z.; Zhao-Karger, Z.; Klyatskaya, S.; Maibach, J.; Ruben, M.; Fichtner, M.
A Self-Conditioned Metalloporphyrin as a Highly Stable Cathode for Fast Rechargeable Magnesium Batteries.
2021. ChemSusChem, 14 (8), 1840–1846. doi:10.1002/cssc.202100340Full textFull text of the publication as PDF document
Zhu, S.; Scardamaglia, M.; Kundsen, J.; Sankari, R.; Tarawneh, H.; Temperton, R.; Pickworth, L.; Cavalca, F.; Wang, C.; Tissot, H.; Weissenrieder, J.; Hagman, B.; Gustafson, J.; Kaya, S.; Lindgren, F.; Källquist, I.; Maibach, J.; Hahlin, M.; Boix, V.; Gallo, T.; Rehman, F.; D’Acunto, G.; Schnadt, J.; Shavorskiy, A.
HIPPIE: a new platform for ambient-pressure X-ray photoelectron spectroscopy at the MAX IV Laboratory.
2021. Journal of synchrotron radiation, 28, 624–636. doi:10.1107/S160057752100103XFull textFull text of the publication as PDF document
Daubner, S.; Kubendran Amos, P. G.; Schoof, E.; Santoki, J.; Schneider, D.; Nestler, B.
Multiphase-field modeling of spinodal decomposition during intercalation in an Allen-Cahn framework.
2021. Physical review materials, 5 (3), Article no: 035406. doi:10.1103/PhysRevMaterials.5.035406Full textFull text of the publication as PDF document
Wang, S.; Hua, W.; Missyul, A.; Darma, M. S. D.; Tayal, A.; Indris, S.; Ehrenberg, H.; Liu, L.; Knapp, M.
Kinetic Control of Long-Range Cationic Ordering in the Synthesis of Layered Ni-Rich Oxides.
2021. Advanced Functional Materials, 31 (19), Article: 2009949. doi:10.1002/adfm.202009949
Ma, Y.; Ma, Y.; Euchner, H.; Liu, X.; Zhang, H.; Qin, B.; Geiger, D.; Biskupek, J.; Carlsson, A.; Kaiser, U.; Groß, A.; Indris, S.; Passerini, S.; Bresser, D.
An Alternative Charge-Storage Mechanism for High-Performance Sodium-Ion and Potassium-Ion Anodes.
2021. ACS Energy Letters, 6 (3), 915–924. doi:10.1021/acsenergylett.0c02365
Zahnow, J.; Bernges, T.; Wagner, A.; Bohn, N.; Binder, J. R.; Zeier, W. G.; Elm, M. T.; Janek, J.
Impedance analysis of NCM cathode materials: Electronic and ionic partial conductivities and the influence of microstructure.
2021. ACS Applied Energy Materials, 4 (2), 1335–1345. doi:10.1021/acsaem.0c02606
Maria Joseph, H.; Fichtner, M.; Munnangi, A. R.
Perspective on ultramicroporous carbon as sulphur host for Li–S batteries.
2021. Journal of Energy Chemistry, 59, 242–256. doi:10.1016/j.jechem.2020.11.001
Schmidt, A.; Ramani, E.; Carraro, T.; Joos, J.; Weber, A.; Kamlah, M.; Ivers-Tiffée, E.
Understanding Deviations between Spatially Resolved and Homogenized Cathode Models of Lithium‐Ion Batteries.
2021. Energy technology, 9 (6), Art.-Nr.: 2000881. doi:10.1002/ente.202000881Full textFull text of the publication as PDF document
Liu, Y.; Wu, Z.; Indris, S.; Hua, W.; Casati, N. P. M.; Tayal, A.; Darma, M. S. D.; Wang, G.; Liu, Y.; Wu, C.; Xiao, Y.; Zhong, B.; Guo, X.
The structural origin of enhanced stability of NaFeCa(PO) cathode for Na-ion batteries.
2021. Nano energy, 79, Article: 105417. doi:10.1016/j.nanoen.2020.105417
Mereacre, V.; Bohn, N.; Müller, M.; Indris, S.; Bergfeldt, T.; Binder, J. R.
Improved performance of high-voltage Li-ion batteries using a novel chemically activated coating process.
2021. Materials research bulletin, 134, Art.-Nr.: 111095. doi:10.1016/j.materresbull.2020.111095